

Home Search Collections Journals About Contact us My IOPscience

Raman and infrared determination of vibrational fundamentals of single-crystal $\rm C_{60}$ and derivatives and of $\rm C_{70}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 6 3161 (http://iopscience.iop.org/0953-8984/6/17/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.147 The article was downloaded on 12/05/2010 at 18:15

Please note that terms and conditions apply.

Raman and infrared determination of vibrational fundamentals of single-crystal C_{60} and derivatives and of C_{70}

P Bowmar[†], W Hayes [†], M Kurmoo[†][‡], P A Pattenden[†], M A Green[‡], P Day[‡] and K Kikuchi[§]

† Department of Physics, Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, UK

‡ The Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS, UK

§ Department of Chemistry, Tokyo Metropolitan University, Hachoji, Tokyo 192-03, Japan

Received 27 September 1993, in final form 28 February 1994

Abstract. We describe results of Raman and infrared (IR) studies of single crystals of pure C_{60} , CS_2 solvated C_{60} ($C_{60}1.5CS_2$), (BEDT-TTF)₂ C_{60} (BEDT-TTF or ET is bis(ethylenedithio)tetrathiafulvalene) and C_{70} . We find that changing the crystalline environment of C_{60} has little effect upon the vibrational frequencies of the intramolecular vibrations but has some effect on relative intensities of peaks. By comparing our IR and Raman spectra using the published inelastic neutron scattering and surface enhanced Raman data we have been able to identify the complete set of 46 fundamental intramolecular vibrational frequencies of C_{60} are not accurate enough to completely assign the symmetries of the identified fundamentals. We comment on effects of oxygen and laser power on the Raman spectrum of C_{60} .

1. Introduction

Recently Raman, surface enhanced Raman scattering (SERS), and inelastic neutron scattering (INS) studies of the intramolecular vibrations of C_{60} and C_{70} have been published (van Loosdrecht *et al* 1992a, 1993, Dong *et al* 1993, Chandrabhas *et al* 1993, Liu *et al* 1992, Coulombeau *et al* 1992, Christides *et al* 1993). However, examination of the published Raman spectra reveals several discrepancies with the published neutron data. We have therefore studied C_{60} molecules in a number of different crystalline environments. We report here Raman and infrared (IR) spectra of single crystals of unsolvated C_{60} , CS₂ solvated C_{60} ($C_{60}1.5CS_2$), (BEDT-TTF)₂ C_{60} (BEDT-TTF or ET is bis(ethylenedithio)tetrathiafulvalene) and C_{70} . We have previously discussed the vibrational modes and the selection rules for Raman and infrared spectra of C_{60} molecules (Bowmar *et al* 1993); there are 46 fundamentals. Isolated C_{70} has D_{5h} symmetry and the vibrations have the following representations (Raghavachari and Rohlfing 1991):

$$\Gamma = 10A_2'' + 21E_1' + 12A_1' + 22E_2' + 19E_2'' + 9A_2' + 9A_1'' + 20E_2''$$

giving 122 fundamentals. The A_2'' and E_1' modes are IR active and the A_1' , E_2' and E_1'' modes are Raman active. The degeneracy of the intramolecular vibrations of C_{70} cannot be determined by INS as unambiguously as with C_{60} because there are five inequivalent carbon atoms in the C_{70} molecule and the scattering cross section is therefore dependent upon the eigenvector of each mode; this is in contrast to C_{60} , which has 60 equivalent carbon atoms and a cross section independent of the eigenvector.

Unsolvated C_{70} grown by sublimation has a hexagonal close packed (HCP) structure with a small admixture of a face centred cubic (FCC) phase and a second HCP phase. After annealing at 573 K (see below) for 17 days the structure becomes predominantly FCC (Green *et al* 1992). Chandrabhas *et al* (1993) showed that the Raman linewidths and peak positions varied smoothly with temperature and concluded that the C_{70} molecules are totally orientationally disordered above 330 K, disordered about the long axis of the molecule between 330 K and 270 K and orientationally ordered below 270 K (Maniwa *et al* (1993) find an orientational phase transition at 280 K).

The aim of this paper is to distinguish fundamental vibrations from combinations and overtones in the complicated IR and Raman vibrational spectra of C_{60} and C_{70} . We also discuss effects of oxygen and laser power on the Raman spectrum of C_{60} (see subsection 4.3).

2. Experimental details

The preparation by sublimation of single crystals of C_{60} and derivatives has previously been described (Bowmar *et al* 1993). Single crystals of C_{70} were also prepared by sublimation and some of these crystals were then annealed at 573 K under a vacuum of 10^{-1} Torr (see section 1). These C_{70} crystals are referred to below as unannealed and annealed (Green *et al* 1992). Details of the Raman and IR equipment used have been previously given (Bowmar *et al* 1993). The resolution was 0.7 cm^{-1} . The laser power density was always less than 0.5 W cm^{-2} , to minimize possible photochemical effects (see subsection 4.3), and there was a consequent penalty in signal to noise ratio (see section 3).

3. Results

The infrared absorption at room temperature of a CS_2 solvated C_{60} and a solvent free crystal have already been described (Bowmar *et al* 1993) and the measured peaks are listed in table 1. Figure 1 shows the IR absorption spectrum of an unannealed C_{70} crystal at room temperature. No significant difference was observed compared to the annealed crystal. Table 2 lists the absorption peaks.

The effects of exposure to air and of temperature upon the Raman spectrum of crystals of C_{60} and derivatives have been previously discussed (Bowmar et al 1993). The room temperature Raman spectra measured from oxygen-free solvated C_{60} , unsolvated C_{60} and ET_2C_{60} and the corresponding spectra at 4 K are shown in figure 2. Figure 3(a) gives the Raman spectrum of C_{60} at 4 K with increased amplification below ~1400 cm⁻¹, showing weaker structure (the presence of oxygen in the crystals affects the Raman spectrum at room temperature but not at 4 K). The Raman spectra from all three types of C_{60} material studied (see section 1) were very similar with only small differences in energies and relative intensities of the individual peaks. There was a weak resonance with the green Ar^+ ion laser lines with both the solvated and unsolvated C_{60} crystals. The Raman spectrum of ET₂C₆₀ did not vary significantly with exciting laser frequency over the Ar⁺ range. However the relative intensities of peaks present in the Raman spectrum of the unsolvated C₆₀ crystal changed considerably when excited by the 4579 Å Ar⁺ line rather than the 5145 Å line and the effect was helpful in distinguishing between combinations and fundamentals. No Raman features originating from CS2 or ET were observed for any of our crystals (see Wentink 1958, Kozlov et al 1987).

Figure 3(b) shows the Raman spectrum from the annealed C_{70} crystal at 4 K. The Raman spectrum did not vary significantly with temperature or with duration of laser irradiation.

derivatives
1
and
`Ś
Ę.
2
÷
cm
frequencies
Vibrational

Raman	Raman	Ramen	INS	SNI	Raman	×	Assisoment
C.0.1.5CS.	ET.C.	C.e	C ₆₀	degeneracy	ي د	S	
4.2K	4.2K	4.2K	20K		293K	293K	
		263	264	5	261		@I
: 271*	268	273*	1/2	ŝ	273		@ (Hg)2
	344		34	4	342		63
355	353		355	5	357		6
			Ą	m			8
			ģ	4 or 5			8
429*	428	429*	432	5	429		@(1))
484		484*	488	1			0 8
496	494	463*	488	4	490 *		@8(Ag)
						522	1+1
528	530	529	526	3	527	526	@ (T1u)10
534			536	4		534	Ø11
568	567	567	563	Ĵ		574	@12
578	580		576 	5		578	@ (Tu)13
					628	2+4	
	669		673	m		699	@i4
708	ş	708+	715	ŝ	+601	712	👁 (Hg)15
726					726		@16
740	741		765	13 to 15		740	@17
757	756	155*			2S	756	@18
773	773	173*			+ 9/1 (776	@ (Hg)19
		792				796	1+11 of
			118	-			@20
			~~~~			826	3+8
			840	3			@21
860	860	\$60			860		7+7
		956			523		7+10
	960					962	@22
		966	971	7 to 8	964		8+8
	516						@Z3
		980			983		2+15
						1018	18+1 or 8+11
1036	[04]	9201			1042	1040	61+1
1080	1078	1080					@24
1100	1099	101*			960	1100	@25(Hg)
						1116	5/6+7
1138	1138	1138			1139	1142	15+7
					1166	1166	Ø26
					173		@27
						1150	@ (T1u)28
1185	1134	1187			1186		21+3 or 7+18
					9611	8611	8+15 or 421
1202	[203	1202					7+19 or 14+11 or
							15+9
						1214	@29

1245* 1245* 1240 12 1241 1240 12 11315 1200 11 11315 1300 12 1315 1300 12 1315 1315 1315 12 1315 1315 1315 12 1315 1315 1315 13 1315 135 1315 135
1321 1320 1 1320 1 1313 1320 1 1313 1322 2 1352 1352 2 1352 2 1352 2 1352 2 1352 2 1352 2 1352 2 1355 2 1355 2 1355 2 1355 2 1450 2 1400 2 1400 2 1400 2 1400 2 1400 2 140
1313 1320 13   1315 1308 20   1315 1315 13   1315 1315 13   1315 1315 13   1315 1315 13   1315 135 13   1315 135 13   1315 135 2   1315 1355 2   1355 1355 2   1420 1430 2   1420 1430 2   1420 1430 2   1430 1430 3   1440 1440 3   1440 1440 3   1440 1440 3   1440 1440 1440   1440 1440 1440   1440 1440 1440   1440 1440 1440
1250 11 1250 11 1315 1250 12 1315 1308 6 1315 1308 6 1325 1305 2 1355 1305 6 1355 1305 12 1450 1440 6 1440 1440 6 1440 1440 6 1440 1440 1440 1440 1440 1440 1440 1440
1200 11 1315 1230 00 1315 1352 1303 00 1352 1352 1352 12 1352 1355 1355 12 1450 1450 00 1450 1
1315 1308 00 1315 1308 13 1352 1352 0 1352 1352 1352 2 1355 1355 1355 13 1355 1355 1355 13 1355 1355
1315 1308 (a) 1315 1315 1315 1315 1315 1315 1315 131
1313 1362 1362 1362 1363 1363 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1365 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375
1362 00 1362 00 1362 00 1362 00 10 1362 1362 1395 1395 1395 1395 1395 1395 1395 1395
1362 1362 1362 1365 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355
1362 1362 1362 1395 1395 1395 1420 1420 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1470 1
1352 1352 1356 13 1356 1356 16 1355 1355 16 14524 14256 16 1440 16 1400 1600 1600 1600 1600 1600 160000000000
1355 1335 2 1355 1335 1335 12 1454 1425 1335 1335 12 1440 1449 00 1440 1449 00 1440 1449 00 1440 1449 00 1440 1449 00 1440 1449 1449 1449 1449 1449 1449 1449
1355 1356 12 1355 1305 12 1424 1436 2 1440 1440 2 1440 1440 2 1440 1440 2 1440 1440 1 1440 2 1440 1 1440 2 1440 1 1440 2 1440 2 1400 2 1400 2 1400 2 1400 2 1400 2 1400 2 1400 2 1400 2 1400 20
13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13955 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 130555 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 13055 130555 13055 130555 130555 130555 130555 130555 130555 130555 130555 130555 130555 130555 130555 1305555 1305555 130555 130555 1305555 1305555 1305555 13055555 1305555 130555555 130555555555 13055555555 1305555555555
11 1424* 1426 1434 0 1440 0
1424* 1426 G
1434 0 1440 0 1440 0 1470 0 11 1497 0 1507 14
1440 00 1460* 1458 00 1470 11 1497 00 1497 00 1497 00 1497 00 1497 00
1460* 1458 GG 1470 11 1477 GG 1497 GG
1497 (2011) 1497 (2011) 1502 (1502)
11497 00
1497 @
11502
11520 @
1 1
1540 0
51
31 j
1572 24
] 3564* G
1584 0
1610-4 2
1625*

@ denotes a fundamental

IR active combinations above 1625cm-1.

1628, 1648, 1656, 1672, 1684, 1692, 1722, 1748, 1780, 1792, 1816, 1828, 1875, 1876, 1892, 1912, 1924, 1936, 1968, 1998, 2016, 2034, 2105, 2135, 2196, 2295, 2295, 2292, 2282, 2282, 2282, 2282, 2282, 2284, 2292, 2284, 2294, 2294, 2294, 2294, 2712, 2812, 2812, 2812, 2848, 2913, 2948, 3604, and 1072

Table 1. Vibrational frequencies  $(cm^{-1})$  of  $C_{60}$  and its derivatives. @ denotes a fundamental.



Figure 1. The IR absorption spectrum of an unannealed single crystal of C70 at 293 K.

The intensity of the Raman spectrum increased on changing the laser wavelength over the range 4579-5145 Å but did not go through a resonance. Raman spectra from the annealed  $C_{70}$  crystals were very similar to those from unannealed crystals but the spectra were slightly sharper. The peak positions are listed in table 2.

## 4. Discussion

#### 4.1. $C_{60}$ and its derivatives

The infrared absorption spectra of both solvated and unsolvated  $C_{60}$  extend to 3072 cm⁻¹, embracing two-phonon absorption. No features were observed above this range, indicating that three-phonon absorption is weak. Apart from the CS₂ modes discussed previously (Bowmar *et al* 1993), the IR absorption peaks measured from solvated C₆₀ crystals were the same as those measured from unsolvated C₆₀ (apart from a few weak missing peaks; see Bowmar *et al* (1993) for a discussion).

Van Loosdrecht *et al* (1992a) showed that some Raman vibrational lines shift discontinuously to higher energy and become narrower on cooling through the FCC-SC phase transition at 252 K. A similar behaviour was observed for all of the  $C_{60}$  derivatives studied by us (figure 2) and is associated with the hindrance of rotation of the  $C_{60}$  molecules (Bowmar *et al* 1993). It is interesting to note that the infrared peak observed at 574 cm⁻¹ at room temperature softens to 567 cm⁻¹ at 4 K in the Raman spectra of all three types of  $C_{60}$  material studied. A similar softening at low temperatures can be seen for many modes in table 1 (see also van Loosdrecht *et al* (1992a)). This is an interesting result since most materials exhibit a hardening of vibrations with decreasing temperature.

Fundamentals were distinguished from combinations and overtones by a detailed comparison of Raman, IR and INS spectra. Peaks in the Raman scattering spectrum observed off resonance were assigned to fundamentals (these are marked with an asterisk in table 1).

-Of O 100 . ŝ Ê

									-								1446			1455		1463		6	8			1512 @							1564 40	0								d wate same he scounted for by the fundamentals			, (121, 1784, 1800, 1806, 1828, 1844, 1856, <u>1870</u> , 1875,	5, 2016, 2041, 2052, 2090, 2107, 2110, 2118, 2141, 2128,	1, 2307, 2328, 2344, 2350, 2359, 2432, 2492, 2616, 2657,	<u>120</u> .
									1405	1.4	.7/1			_	1438m	1442w	148.	1452 w	1456w	1469	166	1112W	1126~	1428x		<u>8</u>	1510	15145	1528~	1534.0	1539	1552	1557	1562		1576	1582-6		1597		1620			Teo Underline			1710, 1717	2016. 202	, 2265, 227	(, <u>3071</u> , 464
																	1455																		1565		_							C. Semil. 7			1684, 1690	1972.2001	2245. 2256	- <b>3011, 3</b> 034
													1432	1436			1418			<u>ş</u>	1467	1112			1496			1513						L	1566			1592					fundamental				639, 1675,	1921, 1966.	2218, 2237.	2965. 2993.
													1432				1448			1459		1471			1 197			1513							1564x					1111	1621	(	O MEDICAL	its enablishi	in community is in the		1628, 1635,	(BBB, 1294.	2192, 2202,	2798, 2930.
Π	T	T	Ι				Γ		Ĺ.		Π							1														T	1	T	T	T	T	T	T	Г	T	Γ	Γ	Ι		F	Γ			Π
$\left  \right $	+		╎	╉		-			9	0		0	0	_	-	9	-	0	-	0	-	0	<b>e</b>		0 0		0		+	-	6	8 0	0	-	┥	╡	9	╉	•			-	╀	+	┞	9	-		8	Η
╢	+	6	+	-	-	-	-		104	1 1060	_		109				_	31				2	Ě		121	_		-	-	-	_	<u>រ</u>	128	$\frac{1}{1}$	$\frac{1}{1}$	╁	+	╀	Ē	+	100	-	╀	-	╞	136	-	-	-	-
		-	+		╞	-	_			-									-		-	-	_	-	_	-	-	-	-	-		+			-						╞	ŀ	╏	╞	-	╞	╞	-		
2		ŝ	-		2		5	. 9	_		74	8a		5	5	i6s	<b>B</b> 02	M2		<u>م</u>	_	_	-	-	-	_	-	_	_	-	ž	-	-	2		2 5	2		1			-		2		ŀ		16 w		
100		Ĩ	216			Ē	8 E	10		ĕ S	10	10		1.66	1.05	Ξ		Ĭ	Ĩ	=	ន		1	21	21	_	21	12	Ż	<u>ř</u>	2	21 26		2	1	8	1		<u>.</u>		2					5	1	11	10	-
		\$		╞		╞		-		2		-	-	_				_				1	_		_	_	11 	-	-	┤	-	=	-	-	-	-	╎			1		-	ł	┢	╞	-				
-	+	348					┞		1050	10	_	1 1087	-	-	-		_	116		112		3			Ĩ	172	ži I	-	_		_	1251	-	+	-	┦	-		181		201	-	╞	-	┞	11/1		137	Ļ	-
		845								1991		6201								1176		1645			1217		12294					12584			j				1		111					1268	-	9463		
•	A STITUTED	T					6		6	6	6	ß	6	6	A	0	E I					0	6	0			0					6	0	0	6	6		6			6				6					e
	SEKS		BJK	5 2	1	1 2	326		358	-	- 960	410	-	-	5	-	-	ŝ	5	Ī		53	565	576		1		-					8	ļ						T	768		T	T	Į	ſ	T			
	SN		Lor			-	2	2	-	2	5			~		-1	-		-		-	 8]	4				4		┛					1		Ī		-		Ī	Ī		T	Ī	T	Ī	Ì	Γ		_
ľ	2		X	٩¢	ភ្	305	310 1	335	366	386	402	415		Ę.		ş	₹		ei2	-		ŝ	5BL		615		55	_	8																		Ī	Ī		8
5	Ľ		293K										4180	430w		45 B.C		<u>5</u>		_	530	534-65	Stor		606		25		6765	<b>8</b> 8		691		7015	122	7165		×11.	-141	111-1-1	768~	1100	1.54	1001	796		865w		m262	\$
ICHICLES OF	Runan		X	1	249					-		101			453		ŝ						567										8						of /		768				104					
	Riman	Annesio	4 <u>7</u>		12	2	324	100	162	585	165	87	419	431	454		503	513	519	522		537	569					6499	675			697	Ę,	Ę	714		72		100		<u>197</u>	*0;		6	101					46
Ine viorau	Ruma	Determined	4 2K		268				362		397	607					3			-	-	536	5695			613		668			693		702			-			242	Î		*0/	1	6	705	,,,				



Figure 2. Raman spectra of (a)  $CS_2$  solvated  $C_{60}$ , (b) unsolvated  $C_{60}$  and (c)  $ET_2C_{60}$  excited by a 5145 Å Ar⁺ ion laser at 293 K. (a) and (b) were measured after the Raman spectra had ceased to change with time due to the removal of molecular oxygen. (c) was measured from a freshly cleaved surface of  $ET_2C_{60}$ . (d), (e) and (f) were measured at 4 K from  $CS_2$  solvated  $C_{60}$ , unsolvated  $C_{60}$  and  $ET_2C_{60}$  respectively.

The extra peaks observed in resonance may be fundamentals, combinations or overtones. The allowed Raman modes (symmetry  $h_g$  and  $a_g$ ) could be assigned on intensity grounds, with the  $a_g$  and  $h_g$  modes being distinguishable because the  $a_g$  Raman tensor is diagonal. Two peaks of similar intensity were observed at 1100 and 1080 cm⁻¹. The 1100 cm⁻¹ mode can be assigned as  $h_g$  by comparison with solution spectra (Chase *et al* 1992). Four strong IR allowed modes were observed from unsolvated C₆₀ and these were assigned to T_{1u} modes (these peaks exhibited partly resolved structure and we have previously attributed this to Fermi resonances (Bowmar *et al* 1993); the structure was not resolved in the less anharmonic C₆₀1.5CS₂).

The INS data of Coulombeau *et al* (1992) can be used to identify the fundamental vibrations in the IR and Raman spectra of  $C_{60}$  below 1000 cm⁻¹ (see table 1). Those peaks that do not lie close to a fundamental in the INS spectra can be accounted for by combinations or overtones of fundamentals (to within the experimental accuracy of  $\sim 2 \text{ cm}^{-1}$ ). We did



Figure 3. (a) The Raman spectrum of unsolvated  $C_{60}$  at 4 K, with the low-energy region enlarged. (b) The Raman spectrum of annealed  $C_{70}$  at 4 K.

not identify crystal field splittings of the fundamentals from this detailed comparison (see table 1). This is consistent with only minor differences being observed between the positions of the main Raman and IR peaks of  $C_{60}$  molecules in the different crystalline environments of our  $C_{60}$  derivatives (see table 1 and also Matus and Kuzmany (1993) for a discussion of crystal field effects in crystalline  $C_{60}$ , not observable in our spectra because of lower signal to noise ratio (see section 2)). Clear changes in relative intensities of Raman peaks are however observed for different derivatives of  $C_{60}$  (see figure 2). When assigning peaks to combinations or overtones we bear in mind that effects of inversion symmetry are relaxed in both the IR and Raman spectra (Bowmar *et al* 1993).

Our analysis was extended to the region between 1000 and 1625 cm⁻¹ by comparing the weak IR peaks and those peaks observed only in resonance Raman spectra with combinations and overtones of the fundamentals below 1000 cm⁻¹; 45 fundamentals were found, leaving one fundamental unidentified (see section 1). The peaks in the IR absorption spectrum between 1625 and 3072 cm⁻¹ correspond to combinations and overtones only and all could be accounted for with the exception of two peaks at 2912 and 3072 cm⁻¹. The remaining fundamental may be sought by subtracting all of the 45 fundamentals from the two peaks above and looking for energies that occur twice. This suggests that the remaining fundamental is at 1488 cm⁻¹, absent from our Raman spectra. However, a line close to this frequency (at 1480 cm⁻¹) has been observed in SERS measurements (Liu *et al* 1992) and with this addition all 46 fundamentals are assigned.

Calculations of the vibrational spectrum of  $C_{60}$  are not accurate. It can be shown that by considering only nearest-neighbour interactions no choice of the bond stretching force constants of the bond lying along pentagon-hexagon or hexagon-hexagon edges can reproduce the frequencies of the two  $a_g$  vibrational modes (Jishi *et al* 1992). Jishi

et al (1992) also considered interactions up to third-nearest neighbours, fitting the force constants to the Raman active modes observed by experiment, but the inaccuracies of the calculations do not make it possible for us to assign symmetry representations to most of the fundamentals with any confidence (see table 1). The INS data of Coulombeau *et al* (1992) give the degeneracy of the modes below 1000 cm⁻¹, helping to assign symmetries in this region (see table 1).

We should point out that some of our assignments do not agree with those of van Loosdrecht *et al* (1993a) or Dong *et al* (1993). Van Loosdrecht *et al* (1993a) analysed their data by assuming that crystal fields make only even modes Raman active. The modes were then assigned by comparison with results of a calculation by Negri *et al* (1988) and by attributing any extra modes to crystal field splitting of degenerate modes. In contrast, we have indicated above that parity rules are not strictly obeyed in the Raman spectra and we have suggested that published calculations are not sufficiently accurate to give a reliable guide in interpreting spectra.

Dong et al (1993) observed many Raman peaks above  $1625 \text{ cm}^{-1}$  from a thin film. These peaks were not observed from single crystals by either van Loosdrecht et al (1993a) or ourselves. This may be a consequence of resonance conditions in thin films different from those found in single crystals. Matus et al (1991) observed a sharp resonance from thin films, whilst we find a broader resonance from our single-crystal samples. Dong et al (1993) attempted to derive all of the fundamentals by producing a set of frequencies and symmetry assignments that could account for the higher-order Raman peaks, using the calculations of Jishi et al (1992) as a guide, but few of these calculated frequencies lie close to our data. Furthermore, the INS data of Coulombeau et al (1992) show that many of these frequencies are incorrectly assigned.

## 4.2. C₇₀ crystals

Table 2 shows our observed IR and Raman peaks for  $C_{70}$  together with results of SERS measurements of Liu *et al* (1992) and the INS data of Christides *et al* (1993). The data were analysed in a similar manner to those for  $C_{60}$ . However, the degeneracies of the vibrational modes cannot be simply found from INS (see section 1). The Raman and IR data agree with the low-energy range of the neutron data but above 682 cm⁻¹ the neutron data are generally of little use because of poor resolution (except for well resolved modes at 899 and 955 cm⁻¹). However, the number of modes assigned by neutron scattering disagrees with our data in regions with a large number of closely spaced modes, e.g. at ~530 cm⁻¹ with  $C_{70}$  (table 2) and ~750 cm⁻¹ with  $C_{60}$  (table 1).

The large number of observed  $C_{70}$  modes makes the use of combinations and overtones to identify weakly allowed fundamentals very limited; in fact only one peak at 1384 cm⁻¹ was identified by considering combinations and overtones and so table 1 does not list the possible combinations. Intense peaks in the Raman and IR spectra are tentatively assigned to fundamentals.

The Raman selection rules are relaxed with SERS but combinations and overtones are not enhanced (Otto 1984). Table 2 shows a comparison of the SERS data of Liu *et al* (1992) with our data and it can be seen that the modes are not shifted significantly. This is not the case for  $C_{60}$ : the data of Akers *et al* (1992) exhibit shifts or order 20 cm⁻¹ from the Raman spectra. We therefore used the SERS data to help with the analysis of our  $C_{70}$  spectra and 64 fundamentals were identified. Above 1630 cm⁻¹ six peaks could not be accounted for by combinations. We resolve many more Raman peaks than Chandrabhas *et al* (1993) but fewer than van Loosdrecht *et al* (1993b). If we compare the Raman spectrum of van Loosdrecht *et al* (1993b) with ours and with the neutron scattering data of Christides *et al*  (1993) we find extra Raman peaks in the low-energy region ( $<600 \text{ cm}^{-1}$ ) of the spectrum of van Loosdrecht *et al* (1993b) that have no counterpart in the INS spectrum and cannot be assigned to combinations or overtones. We observed our significant difference between spectra from annealed and unannealed crystals (see table 2) and our data are consistent with the resolved regions of the INS spectra.

## 4.3. Effects of oxygen and laser power on Raman spectra of $C_{60}$

Van Loosdrecht et al (1992a) showed using an oxygen-free single crystal of  $C_{60}$  that an  $a_{\sigma}$ mode, for example, shifts in a first-order way from 1459 cm⁻¹ to 1468 cm¹⁻ and narrows on cooling through the FCC-SC phase transition at  $\sim$ 252 K (other lines also shift and narrow). Bowmar et al (1993) showed using low laser power ( $<1 \text{ W cm}^{-2}$ ) that a crystal containing some oxygen showed ag peaks at 1459 and 1468 cm⁻¹ at 255 K but on cooling to 250 K only the 1468 cm⁻¹ peak was found. They suggested that oxygen hindered rotation of the  $C_{60}$  molecule in the FCC phase, producing an effect similar to that of the FCC-SC phase change. This effect of oxygen on the dynamics of  $C_{60}$  was directly observed subsequently by Belahmer et al (1993) using high-resolution nuclear magnetic resonance (NMR). They showed that association of  $C_{60}$  with even a single oxygen molecule shifted ¹³C NMR to lower magnetic field, possibly due to charge transfer, and strongly hindered the C₆₀ rotation (see also Assink et al (1992)). Van Loosdrecht et al (1992b, 1993a) find that with excitation intensities greater than 40 W cm⁻² at 40 K the 1468 cm⁻¹ mode decreases in intensity and is replaced by structure on the low-energy side. For laser power greater than 300 W  $\rm cm^{-2}$ the 1468 cm⁻¹ mode has gone and is replaced by a broad band peaking at 1459 cm⁻¹. They suggest that the 1468 cm⁻¹ mode is associated with  $C_{60}$  in a triplet state (but see van Loosdrecht et al (1992a)). However, explanation of the results of Bowmar et al (1993) on this assumption would require a very large increase in triplet population on warming through the SC-FCC phase transition and there is at present no experimental evidence that this occurs (on the contrary, see Pilcher et al (1991) and Lane et al (1992)). A possible alternative explanation is that the ag mode, which involves tangential motion of carbon atoms on the  $C_{60}$  surface is particularly sensitive to charge relaxation (see e.g. Haddon et al (1991), which may be a consequence of the FCC-SC phase change, or to van der Waals bonding with molecular oxygen in an interstitial site (Bowmar et al 1993). It would be interesting to study effects of intense optical excitation on the lattice dynamics of  $C_{60}$  using high-resolution NMR.

Recent authors have described changes in the structure of  $C_{60}$  films caused by laser irradiation (Zhou et al 1992, Rao et al 1993). They find evidence for irreversible photoinduced polymerization for incident laser power levels greater than 5 W cm⁻² at both 5145 and 4880 Å (see section 2), resulting in a shift of the ag pinch mode from 1469 to 1460 cm⁻¹ at room temperature; they suggest that the 1469 cm⁻¹ line is characteristic of oxygen-free FCC  $C_{60}$ . On the other hand, in a study of effects of temperatures up to 400 K and also of laser power on the Raman spectra of single-crystal C₆₀ Hamanaka et al (1993) found that the  $a_g$  pinch mode occurred at 1460 cm⁻¹ at room temperature using low laser power (0.4 W cm⁻² at 4880 Å). However, as the power was increased beyond 55 W cm⁻² the 1460 cm⁻¹ peak was replaced by a peak at 1465 cm⁻¹ and the effect was reversible as the laser power was reduced; comparison with effects of heating the crystal up to 400 K suggested that the changes produced by increasing laser power were due to heat. They found no evidence for polymerization of their crystals at laser power levels of up to 80 W cm⁻². They also found, in agreement with van Loosdrecht *et al* (1992a) and Bowmar et al (1993), that on cooling below the FCC-SC phase transition at  $\sim 250$  K the 1460 cm⁻¹  $a_g$  mode is replaced by a sharper peak at 1468 cm⁻¹ (see above). It is apparent that at the

present time there is confusion in the literature about some aspects of Raman scattering of  $C_{60}$ , possibly contributed to by variable quality of the material studied (for example, use of films rather than crystals and the presence or otherwise of oxygen (see above)).

### References

- Akers K L, Cousins L M and Moskovits M 1992 Chem. Phys. Lett. 180 614
- Assink R A, Schriber J E, Loy D A, Morosin B and Carlson G A 1992 J. Mater. Res. 7 2136
- Belahmer Z, Bernier P, Firlej L, Lambert J M and Ribet M 1993 Phys. Rev. B 47 15980
- Bowmar P, Kurmoo M, Green M A, Pratt F L, Hayes W, Day P and Kikuchi K 1993 J. Phys.: Condens. Matter 5 2739
- Chandrabhas N, Jayaram K, Muthu D V S and Sood A K 1993 Phys. Rev. B 47 10963
- Chase B, Herron N and Holler E 1992 J. Phys. Chem. 96 4262
- Christides C, Nikolaev A V, Dennis T J S, Prassides K, Negri F, Orlandi G and Zerbetto F 1992 J. Phys. Chem. 97 3641
- Coulombeau C, Jobic H, Bernier P, Fabre C, Schütz D and Rassat A 1992 J. Phys. Chem. 96 22
- Dong Z-H, Zhou P, Holden J M, Eklund P C, Dresselhaus M S and Dresselhaus G 1993 Phys. Rev. B 48 2862 Green M A, Kurmoo M, Day P and Kikuchi K 1992 personal communication
- Haddon R C, Hebard A F, Rosseinsky M J, Murphy D W, Duclos S J, Lyons K B, Miller B, Rosamilla J M, Fleming R M, Kortan A R, Glarum S H, Makhija A V, Muller A J, Eick R H, Zahurak S M, Tycko R, Dabbagh G and Thiel F A 1991 Nature 350 600
- Hamanaka Y, Nakashima S, Hangyo M, Shinohara H and Saito Y 1993 Phys. Rev. B 48 8510
- Jishi R A, Mirie R M and Dresselhaus M S 1992 Phys. Rev. B 45 13685
- Kozlov M E, Pokhodnia K I and Yurchenko A A 1987 Spectrochim. Acta 43 323
- Lane P A, Swanson L S, Ni Q-X, Shinar J, Engel J P, Barton T J and Jones L 1992 Phys. Rev. Lett. 68 887
- Liu J, Zhao T, Mo Y, Li T, Liu Y, Zhu K, Li Y, Yao Y, Yang D, Wang X and Zhu D 1992 Solid State Commun. 81 757
- Maniwa Y, Ohi A, Mizoguchi K, Kume K, Kikuchi K, Saito K, Ikemoto I, Suzuki S and Achiba Y 1993 J. Phys. Soc. Japan 62 1131
- Matus M and Kuzmany H 1993 Appl. Phys. A 56 241
- Matus M, Kuzmany H and Krätschmer 1991 Solid State Commun. 80 839
- Negri F, Orlandi G and Zerbetto F 1988 Chem. Phys. Lett. 144 31
- Otto A 1984 Light Scattering in Solids IV (Berlin: Springer)
- Pichler K, Graham S, Gelsen O M, Friend R H, Romanow W J, McCauley J P Jr, Coustel N, Fischer J E and Smith A B III 1991 J. Phys.: Condens. Matter 3 9259
- Raghavachari K and Rohlfing C M 1991 J. Phys. Chem. 95 5768
- Rao A M, Zhou P, Wang K-A, Hager F T, Holden J M, Wang Y, Lee W-T, Bi X-X, Eklund P C, Cornett D S, Duncan M A and Amster I J 1993 Science 259 955
- van Loosdrecht P H M, van Bentum P J M and Meijer G 1992a Phys. Rev. Lett. 68 1176
- 1993a Chem. Phys. Lett. 205 191
- van Loosdrecht P H M, van Bentum P J M, Verheijen M A and Meijer G 1992b Chem. Phys. Lett. 198 587

van Loosdrecht P H M, Verheijen M A, Meekes H, van Bentum P J M and Meijer G 1993b Phys. Rev. B 47 7610 Wentink T Jr 1958 J. Chem. Phys. 29 188

Zhou P, Rao A M, Wang K-A, Robertson J D, Eloi C, Meier M S, Ren S L, Bi X-X and Eklund P C 1992 Appl. Phys. Lett. 60 2871